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Protein Numb, first identified as a cell-fate determinant in Dro-
sophila, has been shown to promote the development of neurites
in mammals and to be cotransported with endocytic receptors in
clathrin-coated vesicles in vitro. Nevertheless, its function in mature
neurons has not yet been elucidated. Here we show that cerebellar
Purkinje cells (PCs) express high levels of Numb during adulthood
and that conditional deletion of Numb in PCs is sufficient to impair
motor coordination despite maintenance of a normal cerebellar cyto-
architecture. Numb proved to be critical for internalization and recy-
cling of metabotropic glutamate 1 receptor (mGlu1) in PCs. A signif-
icant decrease of mGlu1 and an inhibition of long-term depression at
the parallel fiber–PC synapse were observed in conditional Numb
knockout mice. Indeed, the trafficking of mGlu1 induced by agonists
was inhibited significantly in these mutants, but the expression of
ionotropic glutamate receptor subunits and of mGlu1-associated pro-
teins was not affected by the loss of Numb. Moreover, transient and
persistent forms of mGlu1 plasticity were robustly induced in mutant
PCs, suggesting that they do not require mGlu1 trafficking. Together,
our data demonstrate that Numb is a regulator for constitutive ex-
pression and dynamic transport of mGlu1.
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Numb was first identified in Drosophila melanogaster (1) and
is evolutionarily conserved across species (2). During cell

division it segregates asymmetrically in dividing cells and deter-
mines cell fate by interacting with and inhibiting Notch (2–4).
Numb and Numblike, two homologs in mammals (5), are believed
to play redundant roles (6). Numb contains a phosphotyrosine-
binding domain (PTB), a proline-rich domain (PRR), and two
Eps15 homology regions (DPF and NPF). These domains and
motifs make Numb an adaptor protein capable of interacting with a
number of molecules including Notch, Hedgehog, and p53 (2).
In the mammalian CNS Numb/Numblike is essential for

maintaining neural stem cells during neurogenesis (7–10). Numb
may play a critical role in axonal growth during the development
of hippocampal pyramidal cells by mediating endocytosis of
neuronal adhesion molecule L1 (11), and knocking down Numb/
Numblike reduces spine density (12). Numb/Numblike is expressed
not only in neuronal progenitor cells but also in postmitotic adult
neurons (5); however, in mature neurons the cellular function of
Numb and its role at the system level in vivo are unknown.
Because Numb is located in clathrin-coated vesicles and is

cotransported with endocytic receptors (13), we hypothesized
that in adult mammals it might be involved in long-term plasticity
and trafficking of glutamate receptors (14). We used cerebellar
Purkinje cells (PCs) as a model system to investigate these pro-
cesses, because these associations have been clearly laid out in
PCs, and they may reveal tractable read-outs at the behavioral

level (15–18). Our data indicate that conditional deletion of
Numb in PCs causes functional deficits in motor coordination,
which may be ascribed to reduced trafficking of metabotropic
glutamate 1 receptor (mGlu1) to perisynaptic sites at parallel fiber
(PF)–PC synapses.

Results
Adult PCs Express Numb but Not Numblike.Expression of Numb was
fairly weak in mice at birth but increased to a peak at approxi-
mately postnatal day (P)10 and remained constant thereafter
(Fig. 1A and Fig. S1). The mRNA expressions of Numb and its
close homolog Numblike (5) were examined in whole cerebella
and individual PC somata using RT-PCR (19–21). Transcripts of
both were detected in the whole cerebellum of P30 mice, but only
Numb was found in PCs (Fig. 1B). The transcription patterns of
Numb and Numblike also were examined with in situ hybridization
of P30 mice. In accord with RT-PCR, Numb hybridization was
localized to PC somata, but no signal for Numblike was found
(Fig. 1C). The exclusive expression of Numb in P30 PCs was
unexpected, because Numb and Numblike had been found to
coexist in neuronal precursor cells (22).
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Numb Deficiency in PCs Does Not Impair Cyto-Architecture but
Affects Motor Coordination. To assess potential roles of Numb at
the system level, we generated conditional knockout (cKO) mice
that lacked Numb specifically in PCs using the L7-promoter
(Numb-cKO) (23). Deletion of Numb in PCs of Numb-cKO
animals was confirmed by a lack of the Numb band following
RT-PCR of mRNA extracted from their PCs (Fig. 1D) and by
the lack of immunostaining in their PCs (Fig. 1E). The preserved
Numb signal in the granular and molecular layers (Fig. 1E) is in
line with the expression of Numb in granule cells and Bergmann
glia, as shown during development (10, 24). Postnatal Numb-cKO
mice (P21) appeared normal, as shown by unchanged body weight
and cerebellar size (Fig. 1F). Also, their cerebellar cyto-architecture
appeared normal following immunostaining for calbindin and excit-
atory amino acid transporter 4 (EAAT4) (25). Moreover, PC-specific
Numb deficiency did not interfere with lobule thickness, dendritic
branching, or number of spines (Fig. 1 E and G and Fig. S2).

Numb-cKO mice did not show overt ataxia in standard cages
(Movie S1). However, they performed poorly, with a remarkably
higher number of hind-paw slips, when walking on a narrow elevated
beam (Fig. 1H). Numb-cKO mice also exhibited impaired motor
learning in that they showed limited improvement after four or
five sessions on the accelerating rotarod compared with controls
(Fig. 1I). Together, these results indicate that Numb deficiency
in PCs impairs motor coordination.

Long-Term Depression Is Blocked but Long-Term Potentiation Is
Normal in Numb-cKO Mice. Given the location of Numb in cla-
thrin-coated vesicles and the role of clathrin-mediated endocy-
tosis of glutamate receptors in the expression of long-term
depression (LTD) (14), we examined LTD at PF–PC synapses in
Numb-cKO mice in voltage-clamp mode. As shown by paired-
pulse responses to PF stimulation before and after LTD induction
(Fig. 2A), control PCs showed robust PF-LTD (t = 38 min: 67 ± 7%
of baseline; n = 12, P < 0.01) (Fig. 2B) in response to repetitive PF
tetanus paired with PC depolarization. However, LTD induced with
this protocol was blocked in Numb-cKO PCs (t = 38 min: 93 ± 6%
of baseline; n = 11, P > 0.05) (Fig. 2B). Likewise, LTD of PF ex-
citatory postsynaptic potentials (EPSPs) induced by a conjunction of
double PF shocks and PC depolarization (200 ms, 1 nA) repeated at
1 Hz for 5 min in current-clamp mode was also blocked in Numb-
cKO mice (Fig. S3) (26, 27). The ratio of paired-pulse facilitation
(PPF) measured at an interval of 80 ms was not changed after LTD
induction in control and Numb-cKO mice (Fig. 2C), indicating that
presynaptic glutamate release was not affected.
Because not only PF-LTD (18, 28–31), but also PF–long-term

potentiation (LTP) (17, 32–34), has been proposed as a potential
factor contributing to cerebellar motor learning, we investigated
the induction of PF-LTP in Numb-cKO mice using a 1-Hz tetanus
protocol according to previous work (35–37). After acquiring stable
excitatory postsynaptic currents (EPSCs) under voltage-clamp mode
(−70 mV), a tetanus stimulation (1 Hz for 5 min) was delivered to
PFs while the PC was current-clamped (Fig. 2D). The potentiation
of EPSC reached 131 ± 4% of baseline in control mice (t = 38 min;
n = 11, P < 0.01) (Fig. 2E). The same protocol in Numb-cKO

Fig. 1. Impaired motor coordination in Numb-cKO mice. (A) Numb expression
at different postnatal stages in control cerebellum. GAPDH was the internal
control. (B) Electrophoresis of Numb (214 bp), Numblike (369 bp), and GAPDH
(172 bp) amplicons from cerebellar extracts (cere) (n = 5) and individual PCs (n =
7). (C) In situ hybridization with Numb and Numblike riboprobes in cerebellar
sagittal sections from P30 control mice (n = 5). Note that Numb (black arrows),
but not Numblike (blue arrows), was expressed abundantly in PCs. GCL, granule
cell layer; ML, molecular layer; PCL, PC layer. (Scale bars: 100 μm.) (D) Electro-
phoresis of Numb and calbindin from individual control and Numb-cKO PCs (n =
10). (E) Immunohistochemical staining for calbindin (red), Numb (green), and
DAPI (blue) in the cerebellum from control and Numb-cKO mice. Higher mag-
nifications in dashed white boxes indicate that Numb signal is absent from
Numb-cKO PCs. (Scale bars: 50 μm.) (F) Numb-cKO mice (P21) displayed normal
body size and brain. Average bodyweights were 17.5± 1.7 g (control) and 16.6 ±
1.5 g (cKO) (n = 12 pairs; P > 0.05). (G) Immunostaining for calbindin (calb, red)
and EAAT4 (green) shows dendrites and spine formation are normal in
Numb-cKO mice compared with control. (Scale bars: 10 μm.) (H) Percentage
of steps with hindpaw slips during runs on an elevated horizontal beam (n =
10 pairs). (I) Time spent on the accelerating rotarod for control and Numb-
cKO mice (n = 10 pairs). *P < 0.05, **P < 0.01.

Fig. 2. Inhibited LTD but normal LTP in Numb-cKO mice. (A) Two consec-
utive PF EPSCs before (baseline) and after (t = 38 min) LTD induction in
control (ctrl) and Numb-cKO PCs. The interval between paired EPSCs was
80 ms. (B) Time courses for percentage changes of EPSC1 amplitude in control
(black) and Numb-cKO (gray) mice. Each data point was the average of three
successive EPSCs evoked at 0.05 Hz. The arrow indicates LTD induction. (C) Time
courses for PPF from the cells shown in B. (D) Example consecutive PF EPSCs
before (baseline) and after (t = 38 min) LTP induction. (E) Time courses for
percentage changes of EPSC1 amplitude in control (black) and Numb-cKO (gray)
mice. (F) Time courses for PPF ratios from the subset of cells shown in E.
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mice evoked LTP equally successfully (132 ± 4% at t = 38 min;
n = 10, P < 0.01) (Fig. 2E), suggesting that Numb is not associated
with PF-LTP. The PPF ratio was unaffected after induction in
both control and Numb-cKO mice (Fig. 2F), indicating that this
LTP is expressed postsynaptically.

mGlu1 Is Reduced at PC Synapses in Numb-cKO Mice. Impaired PF-
LTD and motor deficits may result from altered mGlu1 expression
(30, 38) and/or glutamatergic transmission (39). Therefore, ex-
pression levels of mGlu1 and ionotropic glutamate receptors were
examined in relation to those of Numb and calbindin. In control
cerebellum (P30) Numb was detected in the isolated synaptic
fraction (Fig. 3A), in line with previous work (11). In Numb-cKO
cerebellum (P30) Numb expression was significantly reduced in
both total and synaptic fractions (P < 0.01) (Fig. 3A); the remaining
Numb may have been from cells other than PCs, because Numb was
not present in PCs of Numb-cKO mice (Fig. 1 D and E). The
amount of calbindin was similar in control and Numb-cKO mice
(Fig. 3A), once again indicating that PC development is normal in
Numb-cKO mice. Interestingly, synaptic mGlu1 was significantly
reduced in Numb-cKO mice (P < 0.01), although its total expres-
sion was not changed (Fig. 3A). Because mGlu1 is highly expressed
at excitatory synapses on PCs (30, 40), this result suggests that
PC ablation of Numb may directly cause the reduction of mGlu1
at PC synapses. In contrast, neither AMPA receptor (AMPAR)
subunit GluA2 nor NMDA receptor (NMDAR) subunit GluN1
was changed in the whole cerebellum or at the synaptic level (P >
0.05) (Fig. 3A).
If the level of mGlu1 is reduced at PF–PC synapses, we should

be able to record a specific difference in currents using whole-
cell recordings. Following burst (100 Hz) stimulation of PFs
under a holding voltage of −70 mV in artificial cerebrospinal
fluid (aCSF) supplemented with 5 μM NBQX (an AMPAR ag-
onist), PCs displayed fast currents mediated by AMPARs and a
slow component mediated by mGlu1 (Fig. 3B) (41, 42). The peak
amplitude of mGlu1 EPSC was reduced significantly in Numb-
cKO mice (165 ± 12 pA; n = 14) compared with controls (237 ±
18 pA; n = 14; P < 0.01) (Fig. 3B). Moreover, we measured
mGlu1 currents evoked by a brief pulse of aCSF containing the
mGlu1 agonist 3,5-dihydroxyphenylglycine (DHPG; 100 μM)
onto recorded PCs (41). DHPG-induced currents were markedly
smaller in Numb-cKO mice (196 ± 12 pA; n = 13) than in controls
(348 ± 19 pA; n = 12; P < 0.01) (Fig. 3C). Finally, the reduction of
mGlu1 currents in Numb-cKO mice was confirmed further when
multiple PF stimulations (5 or 15 pulses at 100 Hz) or different
doses of DHPG (50 and 150 μM) were applied (Fig. S4). In con-
trast, AMPA currents were not affected in PCs of Numb-cKOmice,
because the time constants of AMPA EPSC decay were not
significantly different (P > 0.05) (Fig. 3D), both frequency and
amplitude of AMPA miniature EPSCs (mEPSCs) were unaltered
(P > 0.05) (Fig. 3E) (43), and the PPF of AMPA EPSCs did not
change at different stimulus intervals (P > 0.05) (Fig. 3 F and G).
We next investigated whether impaired PF-LTD may be caused

by altered endocannabinoid production, P/Q-type Ca2+ channels, or
climbing fiber (CF) synapse elimination, all of which are involved in
PF-LTD (44–46). We found that depolarization-induced suppres-
sion of excitatory synapses (DSE), which depends on Ca2+-
mediated endocannabinoid production (44, 47–50), was in-
duced normally in Numb-cKOmice (Fig. S5 A–D). In addition, PCs
can produce endocannabinoid through mGlu1 signaling (51, 52).
We found that the inhibition of PF EPSPs induced by high-fre-
quency stimuli (52) did not differ in control and Numb-cKO mice
(Fig. S5 E–H), suggesting that mGlu1-induced endocannabinoid
production is not affected by Numb deficiency. Moreover, there
was no difference in P/Q channel-mediated Ca2+ transient between
control and Numb-cKO mice (Fig. S6). Finally, CF EPSCs were
elicited in an all-or-none fashion in the majority of PCs in both
control and Numb-cKO mice (Fig. S7), suggesting no difference

in CF synapse elimination. These results support the notion that
endocannabinoid signaling, P/Q-type Ca2+ channels, and CF syn-
apse elimination in PCs do not contribute to impaired PF-LTD in
Numb-cKO mice. Previous studies have reported that CF elimi-
nation is impaired in mGlu1 null-mutant mice (30, 53) but can be
partially restored by transgenic expression of mGlu1 (27, 30). Our
data extend these findings and suggest that partial preservation of
mGlu1 can be sufficient for CF elimination.

Levels of mGlu1-Associated Proteins Are Normal in Numb-cKO Mice.
mGlu1 function may depend on associated modifying proteins
(19, 54–60). Thus, the cellular changes in mGlu1 expression and
currents at PC synapses might reflect a secondary process caused
by an ablated interaction between Numb and one or more proteins

Fig. 3. Synaptic mGlu1 is reduced in Numb-cKO mice. (A) Cerebellar (total)
and PSD fractions from control (ctrl) and Numb-cKO mice were probed with
antibodies to Numb, calbindin, mGlu1, GluA2, and GluN1. GAPDH and PSD95
were internal controls for total and PSD, respectively. Histograms show
percentage changes of proteins in Numb-cKO mice relative to control. Control
(n = 4): 100 ± 5% (total, Numb), 100 ± 4% (PSD, Numb); 100 ± 4% (total,
calbindin), 100 ± 4% (PSD, calbindin); 100 ± 5% (total, mGlu1), 100 ± 4% (PSD,
mGlu1); 100 ± 4% (total, GluA2), 100 ± 6% (PSD, GluA2); 100 ± 7% (total,
GluN1), 100 ± 5% (PSD, GluN1). Numb-cKO (n = 4): 51 ± 7% (total, Numb), 50 ±
9% (PSD, Numb); 101 ± 8% (total, calbindin), 99 ± 9% (PSD, calbindin); 96 ±
9% (total, mGlu1), 54 ± 9% (PSD, mGlu1); 104 ± 6% (total, GluA2), 102 ± 6%
(PSD, GluA2); 98 ± 8% (total, GluN1), 97 ± 9% (PSD, GluN1). (B) mGlu1 EPSCs
produced by a PF burst (Green Inset: 10 pulses, 100 Hz). mGlu1 EPSCs were
blocked by its antagonist CPCCOEt (100 μM). Peaks were measured as in-
dicated by black dots. (C) Slow currents were evoked by a pulse (10 psi, 20 ms)
of aCSF containing DHPG (100 μM) and were blocked by the mGlu1 antagonist
CPCCOEt (100 μM). (D) Representative AMPA EPSCs in control and Numb-cKO
PCs. The decay was fit with a single exponential in both cells, and mean time-
constants were 12.8 ± 0.9 ms (control; n = 24) and 12.2 ± 1.2 ms (cKO; n = 30).
(E) mEPSCs recorded from control (n = 10) and Numb-cKO (n = 10) PCs. mEPSC
parameters were frequency, 1.4 ± 0.3 (control) and 1.3 ± 0.3 (cKO); amplitude,
13.2 ± 1.2 pA (control) and 13.8 ± 1.1 pA (cKO). (F) Superposition of PF EPSCs
evoked at different intervals in a control cell. (G) PPF as a function of in-
terstimulus interval in control (n = 11) and Numb-cKO (n = 12) cells. **P < 0.01.

15476 | www.pnas.org/cgi/doi/10.1073/pnas.1512915112 Zhou et al.

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
15

, 2
02

1 

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1512915112/-/DCSupplemental/pnas.201512915SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1512915112/-/DCSupplemental/pnas.201512915SI.pdf?targetid=nameddest=SF5
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1512915112/-/DCSupplemental/pnas.201512915SI.pdf?targetid=nameddest=SF5
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1512915112/-/DCSupplemental/pnas.201512915SI.pdf?targetid=nameddest=SF5
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1512915112/-/DCSupplemental/pnas.201512915SI.pdf?targetid=nameddest=SF5
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1512915112/-/DCSupplemental/pnas.201512915SI.pdf?targetid=nameddest=SF5
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1512915112/-/DCSupplemental/pnas.201512915SI.pdf?targetid=nameddest=SF5
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1512915112/-/DCSupplemental/pnas.201512915SI.pdf?targetid=nameddest=SF6
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1512915112/-/DCSupplemental/pnas.201512915SI.pdf?targetid=nameddest=SF7
www.pnas.org/cgi/doi/10.1073/pnas.1512915112


www.manaraa.com

that interact with mGlu1. We therefore investigated the levels of
mGlu1-associated substrates in Numb-cKO mice. Western blots
showed deletion of Numb in PCs did not affect the total or synaptic
level of mGlu1-related proteins (Fig. 4A), including transient re-
ceptor potential channel 3 (TRPC3) (56, 57), inositol trisphosphate
receptor (IP3R) (55), stromal interaction molecule 1 (STIM1) (58),
Homer1 (59), and ERK (60). Furthermore, real-time quantitative
RT-PCR was used to detect transcripts of mGlu1 (Grm1) and genes
of associated proteins [Gnaq (Gαq) (19), Plcb4 (PLCβ4) (55), Itpr1
(IP3R) (55), Trpc3 (TRPC3) (56, 57), and Stim1 (Stim1) (58)] in
individual PCs. Numb deficiency in PCs did not interfere signifi-
cantly with mRNA levels of these genes (Fig. 4B). These results
suggest that the reduced level of synaptic mGlu1 currents is not
caused by deregulation of its associated proteins.

Numb Deficiency Affects mGlu1 Trafficking but Not Its Plasticity.Kim
et al. (61) found that mGlu1 currents themselves can exhibit
persistent depression (mGluR LTD) following CF stimulation-
like depolarization. Because Numb is located in clathrin-coated
vesicles and is transported along with endocytic receptors (13), it
might be involved in mGlu1 LTD. To address this question, we
recorded mGlu1 EPSCs for a stable period and applied a 5-s step
depolarization from −70 mV to 0 mV to clamped PCs. In control
PCs, mGlu1 EPSCs decreased immediately (30 s after depolar-
ization) and showed a strong depression 30 min later (Fig. 5A).
The decrease in mGlu1 EPSCs was slower and the final de-
pression was less substantial (t = 30 min: 19 ± 6% of baseline;
n = 12, P < 0.01) (Fig. 5B) than reported by Kim et al. (61).
Against our assumption, the amplitude of mGlu1 EPSC also was

decreased after depolarization in mutant PCs (t = 30 min: 25 ±
7% of baseline; n = 12, P < 0.01) (Fig. 5 A and B), showing no
difference between controls and mutants (P > 0.05). The am-
plitudes of AMPA EPSCs did not show any change after de-
polarization either in controls or in Numb-cKO mice (P > 0.05)
(Fig. 5B), consistent with previous work (58). These data suggest
that Numb is not directly involved in the induction of mGlu1-LTD.
mGlu1 EPSCs also can undergo a transient (short-term) up-

regulation (mGlu1-STP) in response to a brief depolarizing current
(41, 62), so we next investigated to what extent Numb might be
required for mGlu1-STP. After recording a test mGlu1 EPSC, so-
matic depolarization to 0 mV for 100 ms was delivered to the
recorded PC. A second mGlu1 EPSC was evoked at intervals of
10 to 180 s (Fig. 5C). The conditioning depolarization produced
a potentiation of mGlu1 current but had no effect on AMPA
EPSCs (P > 0.05) (Fig. 5D). We found that mGlu1-STP was
induced robustly in both control and Numb-cKO PCs at similar
degrees across a range of intervals (Fig. 5D), indicating that Numb
is not involved in mGlu1-STP.
It has been shown that mGlu1 is internalized (63–66) and

recycled back into the cell membrane (65) upon ligand exposure.
Because trafficking may affect receptor targeting at the cell
membrane, we investigated whether Numb is involved in the
internalization and recycling of mGlu1. DHPG (100 μM) was
applied to acute cerebellar slices for 10 min, and the level of
synaptic mGlu1 was measured 30 min (for endocytosis) or 180 min
(for recycling) after DHPG application. In control slices, synaptic

Fig. 4. Expressions of mGlu1-associated proteins are normal in Numb-cKO
mice. (A) Cerebellar (total) and PSD fraction of control (ctrl) and Numb-cKO
mice were probed by immunoblotting with antibodies to TRPC3, IP3R, STIM1,
Homer1, and ERK. GAPDH and PSD95 were loading controls for total and
PSD, respectively. Percentage changes of signal intensities were control,
100 ± 4% (total, TRPC3), 100 ± 4% (PSD, TRPC3); 100 ± 5% (total, IP3R) 100 ±
6% (PSD, IP3R); 100 ± 8% (total, STIM1), 100 ± 8% (PSD, STIM1); 100 ± 4%
(total, Homer1), 100 ± 6% (PSD, Homer1); 100 ± 7% (total, ERK), 100 ± 6%
(PSD, ERK); cKO, 98 ± 6% (total, TRPC3), 98 ± 8% (PSD, TRPC3); 96 ± 8%
(total, IP3R), 97 ± 8% (PSD, IP3R); 104 ± 11% (total, STIM1), 103 ± 11% (PSD,
STIM1); 98 ± 5% (total, Homer1), 99 ± 9% (PSD, Homer1); 98 ± 9% (total,
ERK), 99 ± 6% (PSD, ERK). n = 4. (B) Percentage changes of transcript copy
numbers per cell for the indicated genes. Grm1, 100 ± 9% (n = 13, control)
and 105 ± 10% (n = 14, cKO); Gnaq, 100 ± 8% (n = 13, control) and 113 ±
14% (n = 14, cKO); Plcb4, 100 ± 8% (n = 13, control) and 95 ± 14% (n = 14,
cKO); Itpr1, 100 ± 11% (n = 13, control) and 112 ± 19% (n = 14, cKO); Trpc3,
100 ± 13% (n = 13, control) and 102 ± 17% (n = 14, cKO); Stim1, 100 ± 12%
(n = 13, control) and 92 ± 19% (n = 14, cKO).

Fig. 5. mGlu1-LTD and mGlu1-STP are normal, but mGlu1 trafficking is
inhibited in Numb-cKO mice. (A) mGlu1 EPSCs before and after the condi-
tioning depolarization (depol; 5-s command to 0 mV at the soma) in control
(ctrl) and Numb-cKO cells. Peaks of mGlu1 EPSCs and first AMPA EPSCs were
measured as indicated by dots and arrows, respectively. (B) Time courses of
percentage changes of mGlu1 EPSCs (left y axis) and AMPA EPSCs (right y
axis) from control (n = 12) and Numb-cKO (n = 12) cells before and after 5-s
depolarization. (C) Representative traces from one control PC showing trials
before (pre), and 10, 30, and 180 s after somatic depolarization to 0 mV for
100 ms. (D) Time courses for percentage changes of mGlu1 EPSCs and AMPA
EPSCs in control (n = 10) and Numb-cKO (n = 9) cells. (E) Control and Numb-
cKO cerebellar slices were stimulated with 100 μM DHPG for 10 min, and
mGlu1 in total and PSD fraction was immunoblotted 30 min or 180 min after
DHPG challenge. GAPDH was the control. (F) Percentage changes of synaptic
mGlu1 intensities were control: 100 ± 5% (0 min), 34 ± 4% (10 min + 30 min),
77 ± 8% (10 min + 180 min); cKO: 100 ± 4% (0 min), 96 ± 8% (10 min +
30 min), 103 ± 8% (10 min + 180 min). n = 4. *P < 0.05. **P < 0.01.
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mGlu1 decreased to 34 ± 4% of the basal level at t = 40 min (n = 4;
P < 0.01) but returned to 77 ± 8% at t = 190 min (n = 4; P > 0.05)
(Fig. 5 E and F). The down- and up-regulation of mGlu1 expression
in response to such agonist challenges was similar to results
reported in previous work in other wild-type mice (66–68). In
contrast, synaptic mGlu1 was not changed either 30 min or 180 min
after DHPG application to Numb-cKO slices (t = 40 min: 96 ± 8%;
t = 190 min: 103 ± 8%; P > 0.05 compared with baseline) (Fig. 5 E
and F), suggesting that Numb is required for the internalization and
recycling of mGlu1 in PCs.

Discussion
The present work reveals a previously unidentified role for
Numb in cerebellar PCs: It regulates constitutive synaptic ex-
pression and dynamic trafficking of mGlu1 as well as LTD and
motor coordination in young adult animals. Numb’s functions in
neurogenesis (7–10) and development (11, 12) have been
reported previously, but to our knowledge this is the first report
regarding Numb function in mature neurons. We showed that (i)
Numb is expressed in PCs without coexpression of Numblike, (ii)
deficiency of Numb does not overtly influence PC development,
(iii) PC-specific Numb deficiency impairs motor coordination,
(iv) Numb deficiency specifically decreases constitutive expres-
sion of synaptic mGlu1 in PCs and blocked induction of PF-
LTD, and (v) the Numb-dependent decrease of mGlu1 currents
is not caused by either deregulation of associated proteins or by
short-term or long-term forms of mGlu1 plasticity but probably is
caused mainly by aberrant internalization and recycling.
The putative role of Numb in internalization is supported by

its possible role as an endocytic adaptor (13). Indeed, Numb
contains PTB, PRR, DPF, and NPF motifs (2) and is located in
clathrin-coated vesicles, probably functioning in the transport of
a number of receptors (13). Prevailing evidence has shown that
Numb exerts comparable roles in the development of neurons in
culture (11, 12) and binds with β-amyloid precursor protein in
neurodegenerative diseases (69). We report here that mGlu1
expression in the isolated synaptic fraction in Numb-cKO mice is
reduced, although its total expression is not altered. Further-
more, mGlu1 EPSCs evoked by strong burst stimulation of PFs (38,
41, 42) are significantly decreased in Numb-cKO mice. Because
mGlu1 is expressed primarily at perisynaptic sites adjacent and
linked to the postsynaptic densities (PSDs) (70, 71), the present
biochemical and electrophysiological data suggest a selective re-
duction of mGlu1 expression at the perisynaptic sites in PCs. In
contrast, synaptic GluA2 in PCs was not affected by the ablation of
Numb. Because Numb is an adaptor of clathrin complex, our find-
ings lead to a hypothesis: Cargo selection during clathrin-dependent
transportation is determined not by clathrin and its general adaptors,
such as AP2, but by specified adaptor proteins, such as Numb.
In addition, we present several other important findings. We

found that Numb is present in PCs, but Numblike is absent. This
finding challenges the idea that Numb and Numblike generally
coexist in neurons, as observed in neural stem cell studies (22).
Possibly, this distinction also reflects a difference in de-
velopmental stage, because previously the roles of these proteins
had not been investigated extensively in mature neurons. Fur-
thermore, we found that development of spines and dendrites of
PCs is largely normal in Numb-cKO mice. These findings place
previous reports on the role of Numb in cultured neurons in a
different light (11, 12). Possibly, the differences can be explained

by differential effects under in vivo and in vitro conditions, but
further experimentation is needed.
We show that both the constitutive expression and dynamic

trafficking of mGlu1 are regulated by Numb. Evidence mainly
from in vitro studies has shown that intracellular trafficking of
mGlu1 is subjected to regulation by multiple signaling molecules.
The internalization of mGlu1 may depend on various proteins,
including arrestin and dynamin (72), protein kinase C (73), caveolar
lipid rafts (64, 68), and Rab8 (66). Pandey et al. (67) found that
recycling of mGlu1 depends on protein phosphatase 2A and Rab11.
Thus, it will be interesting to determine whether and to what extent
Numb-regulated internalization and recycling of mGlu1 are medi-
ated by these molecules.
mGlu1 currents undergo STP and LTD in response to CF

stimulation or PC depolarization (41, 61, 62), but the underlying
mechanisms are not fully understood. Kim et al. (41) found that
mGlu1-STP is blocked by depletion of IP3-gated Ca2+ stores and
postsynaptic IP3R blockade, suggesting critical roles of endo-
plasmic reticulum. Kim et al. (61) hypothesized that mGlu1,
Gαq, or a protein that interacts with them is the molecular target
of mGlu1-LTD. Here, we show that both mGlu1-STP and mGlu1-
LTD remain intact, although the intracellular trafficking of mGlu1
is inhibited by Numb knockout. These findings suggest that stimu-
lation protocols for mGlu1-STP and mGlu1-LTD do not induce
dynamic transport of mGlu1 and that the plasticity of mGlu1 may
be triggered by altered activity of mGlu1-associated proteins.
We found that Numb-cKO mice had impaired motor co-

ordination, which may be directly ascribed to reduced mGlu1
currents, affecting PC excitability (30, 74). To what extent a
deficit in mGlu1-dependent PF-LTD contributes to the pheno-
type on the accelerating rotarod remains to be determined.
Many mouse mutants suffering from a lack of PF-LTD perform
well on a rotarod, bringing into question a direct role of PF-LTD
(17, 32). However, it is possible that a lack of PF-LTD in a motor
learning process can be compensated by plastic inhibitory actions
of molecular layer interneurons (33) and/or that the significance
of PF-LTD and PF-LTP depends on the chemical identity of the
modules involved (75, 76). Indeed, zebrin II+ and zebrin II− PCs
show different intrinsic properties with probably different pro-
pensities for particular learning rules (77).

Materials and Methods
Animal experiments were carried out in accordance with the NIH Guide for
the Care and Use of Laboratory Animals (78) and approved by the Animal
Experimentation Ethics Committee of Zhejiang University. Mice in which
exon 1 of the Numb gene was flanked by loxP sites were crossed with mice
heterozygous for the L7-Cre transgene to obtain Numb-cKO mice. For all
experimental details, see SI Materials and Methods. The primer sequences
used for the SYBR Green probe (GenBank) are listed in Table S1. The ribo-
probe sequences are listed in Table S2.
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